注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

白___传递正能量

欢迎光临!

 
 
 

日志

 
 

购物篮分析  

2011-09-09 17:32:20|  分类: 营销管理 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
说起关联问题,可能要从“啤酒和尿布”说起了。有人说啤酒和尿布是沃尔玛超市的一个经典案例,也有人说,是为了宣传数据挖掘/数据仓库而编造出来的虚构的“托”。不管如何,“啤酒和尿布”给了我们一个启示:世界上的万事万物都有着千丝万缕的联系,我们要善于发现这种关联。

 

 

关联分析要解决的主要问题是:一群用户购买了很多产品之后,哪些产品同时购买的几率比较高?买了A产品的同时买哪个产品的几率比较高?可能是由于最初关联分析主要是在超市应用比较广泛,所以又叫“购物篮分析”,英文简称为MBA,当然此MBA非彼MBA,意为Market Basket Analysis

 

 

如果在研究的问题中,一个用户购买的所有产品假定是同时一次性购买的,分析的重点就是所有用户购买的产品之间关联性;如果假定一个用户购买的产品的时间是不同的,而且分析时需要突出时间先后上的关联,如先买了什么,然后后买什么?那么这类问题称之为序列问题,它是关联问题的一种特殊情况。从某种意义上来说,序列问题也可以按照关联问题来操作。

 

 

关联分析有三个非常重要的概念,那就是“三度”:支持度、可信度、提升度。假设有10000个人购买了产品,其中购买A产品的人是1000个,购买B产品的人是2000个,AB同时购买的人是800个。支持度指的是关联的产品(假定A产品和B产品关联)同时购买的人数占总人数的比例,即800/10000=8%,有8%的用户同时购买了AB两个产品;可信度指的是在购买了一个产品之后购买另外一个产品的可能性,例如购买了A产品之后购买B产品的可信度=800/1000=80%,即80%的用户在购买了A产品之后会购买B产品;提升度就是在购买A产品这个条件下购买B产品的可能性与没有这个条件下购买B产品的可能性之比,没有任何条件下购买B产品可能性=2000/10000=20%,那么提升度=80%/20%=4

 

 

如需了解细节,请查阅:关联规则、apriror算法中等相关知识。

  评论这张
 
阅读(2845)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017